Exercise 52

For the following exercises, which of the tables could represent a linear function? For each that could be linear, find a linear equation that models the data.

x	2	4	6	8
$f(x)$	-4	16	36	56

Solution

This table represents a linear function because as x increases by $2, f(x)$ increases by 20 . Two points on this line are

$$
(2,-4) \text { and }(4,16) \text {. }
$$

The general equation for a line is

$$
y=m x+b
$$

The first point says that when $x=2, y=-4$.

$$
-4=m(2)+b
$$

The second point says that when $x=4, y=16$.

$$
16=m(4)+b
$$

This is a system of two equations with two unknowns that can be solved.

$$
\left\{\begin{array}{l}
2 m+b=-4 \\
4 m+b=16
\end{array}\right.
$$

Subtract the respective sides of these equations to eliminate b.

$$
2 m-4 m=-4-16 \quad \rightarrow \quad-2 m=-20 \quad \rightarrow \quad m=10
$$

Multiply both sides of the first equation by -2

$$
\left\{\begin{aligned}
-4 m-2 b & =8 \\
4 m+b & =16
\end{aligned}\right.
$$

and then add the respective sides to eliminate m.

$$
-2 b+b=8+16 \quad \rightarrow \quad-b=24 \quad \rightarrow \quad b=-24
$$

Now that m and b have been solved for, the line is known.

$$
y=10 x-24
$$

